Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Med (Lond) ; 4(1): 28, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38396065

RESUMEN

BACKGROUND: Vaccinations against the SARS-CoV-2 are still crucial in combating the ongoing pandemic that has caused more than 700 million infections and claimed almost 7 million lives in the past four years. Omicron (B.1.1.529) variants have incurred mutations that challenge the protection against infection and severe disease by the current vaccines, potentially compromising vaccination efforts. METHODS: We analyzed serum samples taken up to 9 months post third dose from 432 healthcare workers. Enzyme-linked immunosorbent assays (ELISA) and microneutralization tests (MNT) were used to assess the prevalence of vaccine-induced neutralizing antibodies against various SARS-CoV-2 Omicron variants. RESULTS: In this serological analysis we show that SARS-CoV-2 vaccine combinations of BNT162b2, mRNA-1273, and ChAdOx1 mount SARS-CoV-2 binding and neutralizing antibodies with similar kinetics, but with differing neutralization capabilities. The most recent Omicron variants, BQ.1.1 and XBB.1.5, show a significant increase in the ability to escape vaccine and infection-induced antibody responses. Breakthrough infections in thrice vaccinated adults were seen in over 50% of the vaccinees, resulting in a stronger antibody response than without infection. CONCLUSIONS: Different three-dose vaccine combinations seem to induce considerable levels of neutralizing antibodies against most SARS-CoV-2 variants. However, the ability of the newer variants BQ1.1 and XBB 1.5 to escape vaccine-induced neutralizing antibody responses underlines the importance of updating vaccines as new variants emerge.


During the COVID-19 pandemic, mass vaccination efforts against SARS-CoV-2 infection have provided effective protection against the virus and helped reduce the severity of symptoms in infected individuals. However, it is not well established whether the existing vaccines can provide the same protection against new and emerging SARS-CoV-2 variants that develop over time as the virus evolves. In this study, we tested combinations of three-dose COVID-19 vaccines given in random order to protect against all SARS-CoV-2 variants in circulation including the newest being Omicron variants. We demonstrate that more than half of the population who received the three-dose vaccine combinations were infected with SARS-CoV-2 Omicron variants after receiving the last vaccine dose. These findings indicate the need to develop new vaccine candidates against emerging SARS-CoV-2 variants.

2.
Front Immunol ; 14: 1099246, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36756112

RESUMEN

Introduction: The prime-boost COVID-19 mRNA vaccination strategy has proven to be effective against severe COVID-19 disease and death. However, concerns have been raised due to decreasing neutralizing antibody levels after COVID-19 vaccination and due to the emergence of new immuno-evasive SARS-CoV-2 variants that may require additional booster vaccinations. Methods: In this study, we analyzed the humoral and cell-mediated immune responses against the Omicron BA.1 and BA.2 subvariants in Finnish healthcare workers (HCWs) vaccinated with three doses of COVID-19 mRNA vaccines. We used enzyme immunoassay and microneutralization test to analyze the levels of SARS-CoV-2 specific IgG antibodies in the sera of the vaccinees and the in vitro neutralization capacity of the sera. Activation induced marker assay together with flow cytometry and extracellular cytokine analysis was used to determine responses in SARS-CoV-2 spike protein stimulated PBMCs. Results: Here we show that within the HCWs, the third mRNA vaccine dose recalls both humoral and T cell-mediated immune responses and induces high levels of neutralizing antibodies against Omicron BA.1 and BA.2 variants. Three weeks after the third vaccine dose, SARS-CoV-2 wild type spike protein-specific CD4+ and CD8+ T cells are observed in 82% and 71% of HCWs, respectively, and the T cells cross-recognize both Omicron BA.1 and BA.2 spike peptides. Although the levels of neutralizing antibodies against Omicron BA.1 and BA.2 decline 2.5 to 3.8-fold three months after the third dose, memory CD4+ T cell responses are maintained for at least eight months post the second dose and three months post the third vaccine dose. Discussion: We show that after the administration of the third mRNA vaccine dose the levels of both humoral and cell-mediated immune responses are effectively activated, and the levels of the spike-specific antibodies are further elevated compared to the levels after the second vaccine dose. Even though at three months after the third vaccine dose antibody levels in sera decrease at a similar rate as after the second vaccine dose, the levels of spike-specific CD4+ and CD8+ T cells remain relatively stable. Additionally, the T cells retain efficiency in cross-recognizing spike protein peptide pools derived from Omicron BA.1 and BA.2 subvariants. Altogether our results suggest durable cellmediated immunity and protection against SARS-CoV-2.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Inmunidad Celular , Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Linfocitos T CD8-positivos , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , Inmunoglobulina G , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus
3.
Nat Commun ; 13(1): 2476, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35513437

RESUMEN

Two COVID-19 mRNA (of BNT162b2, mRNA-1273) and two adenovirus vector vaccines (ChAdOx1 and Janssen) are licensed in Europe, but optimization of regime and dosing is still ongoing. Here we show in health care workers (n = 328) that two doses of BNT162b2, mRNA-1273, or a combination of ChAdOx1 adenovirus vector and mRNA vaccines administrated with a long 12-week dose interval induce equally high levels of anti-SARS-CoV-2 spike antibodies and neutralizing antibodies against D614 and Delta variant. By contrast, two doses of BNT162b2 with a short 3-week interval induce 2-3-fold lower titers of neutralizing antibodies than those from the 12-week interval, yet a third BNT162b2 or mRNA-1273 booster dose increases the antibody levels 4-fold compared to the levels after the second dose, as well as induces neutralizing antibody against Omicron BA.1 variant. Our data thus indicates that a third COVID-19 mRNA vaccine may induce cross-protective neutralizing antibodies against multiple variants.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Vacuna nCoV-2019 mRNA-1273 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacuna BNT162 , COVID-19/prevención & control , Humanos , SARS-CoV-2 , Vacunas Sintéticas , Vacunas de ARNm
4.
Microbiol Spectr ; 10(2): e0225221, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35262410

RESUMEN

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has raised concern about increased transmissibility, infectivity, and immune evasion from a vaccine and infection-induced immune responses. Although COVID-19 mRNA vaccines have proven to be highly effective against severe COVID-19 disease, the decrease in vaccine efficacy against emerged Beta and Delta variants emphasizes the need for constant monitoring of new virus lineages and studies on the persistence of vaccine-induced neutralizing antibodies. To analyze the dynamics of COVID-19 mRNA vaccine-induced antibody responses, we followed 52 health care workers in Finland for 6 months after receiving two doses of BNT162b2 vaccine with a 3-week interval. We demonstrate that, although anti-S1 antibody levels decrease 2.3-fold compared to peak antibody levels, anti-SARS-CoV-2 antibodies persist for months after BNT162b2 vaccination. Variants D614G, Alpha, and Eta are neutralized by sera of 100% of vaccinees, whereas neutralization of Delta is 3.8-fold reduced and neutralization of Beta is 5.8-fold reduced compared to D614G. Despite this reduction, 85% of sera collected 6 months postvaccination neutralizes Delta variant. IMPORTANCE A decrease in vaccine efficacy against emerging SARS-CoV-2 variants has increased the importance of assessing the persistence of SARS-CoV-2 spike protein-specific antibodies and neutralizing antibodies. Our data show that after 6 months post two doses of BNT162b2 vaccine, antibody levels decrease yet remain detectable and capable of neutralizing emerging variants. By monitoring the vaccine-induced antibody responses, vaccination strategies and administration of booster doses can be optimized.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Formación de Anticuerpos , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , ARN Mensajero , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus , Vacunación , Vacunas Sintéticas , Vacunas de ARNm
5.
Nat Commun ; 12(1): 3991, 2021 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-34183681

RESUMEN

As SARS-CoV-2 has been circulating for over a year, dozens of vaccine candidates are under development or in clinical use. The BNT162b2 mRNA COVID-19 vaccine induces spike protein-specific neutralizing antibodies associated with protective immunity. The emergence of the B.1.1.7 and B.1.351 variants has raised concerns of reduced vaccine efficacy and increased re-infection rates. Here we show, that after the second dose, the sera of BNT162b2-vaccinated health care workers (n = 180) effectively neutralize the SARS-CoV-2 variant with the D614G substitution and the B.1.1.7 variant, whereas the neutralization of the B.1.351 variant is five-fold reduced. Despite the reduction, 92% of the seronegative vaccinees have a neutralization titre of >20 for the B.1.351 variant indicating some protection. The vaccinees' neutralization titres exceeded those of recovered non-hospitalized COVID-19 patients. Our work provides evidence that the second dose of the BNT162b2 vaccine induces cross-neutralization of at least some of the circulating SARS-CoV-2 variants.


Asunto(s)
Anticuerpos ampliamente neutralizantes/sangre , Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Inmunogenicidad Vacunal , SARS-CoV-2/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Vacuna BNT162 , Anticuerpos ampliamente neutralizantes/inmunología , COVID-19/sangre , COVID-19/epidemiología , COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Protección Cruzada/inmunología , Femenino , Finlandia/epidemiología , Humanos , Inmunización Secundaria/métodos , Inmunización Secundaria/estadística & datos numéricos , Masculino , Vacunación Masiva/métodos , Vacunación Masiva/estadística & datos numéricos , Persona de Mediana Edad , Pruebas de Neutralización/estadística & datos numéricos , Reinfección/inmunología , Reinfección/prevención & control , Reinfección/virología , SARS-CoV-2/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...